## Worksheet 7b

1. Answer the following questions:

a. 
$$f = \{(10,7), (-2,4), (5,3), (4,10)\}$$

Domain:

Range:

$$f(10) =$$

b.



Domain:

Range:

$$f(-3) =$$

c.



Domain:

Range:

Is it a function?

Week 8 Functions and Relation

d.



Domain:

Range:

$$f(0) =$$

e.



Domain:

Range:

Is it a function?

Week 8 Functions and Relation

f.



Domain:

Range:

Is it a function?

g.



Domain:

Range:

Is it a function?

- 2. Let  $f: \mathbb{R} \to \mathbb{R}$  be defined by f(x) = x
  - a. What is the domain of f?
  - b. What is the codomain of f?
  - c. Is *f* a function?
  - d. What is the image of f?
  - e. What is the preimage of [4,9]?
  - f. Is f injective (one-to-one)? If so, prove the statement (Ch. 5.5)

MATH 258-02 4 Harry Yan

- 3. Let  $f: \mathbb{R} \to \mathbb{R}$  be defined by  $f(x) = x^2$ 
  - a. What is the domain of f?
  - b. What is the codomain of f?
  - c. Is f a function?
  - d. What is the image of f?
  - e. What is the preimage of [4,9]?
  - f. Is f injective (one-to-one)? If so, prove the statement (Ch. 5.5)

- 4. Let  $f: \mathbb{N} \to \mathcal{P}(\mathbb{N})$  be defined by  $f(n) = \{1, 2, 3, ..., n\}$ 
  - a. What is the domain of f?
  - b. What is the codomain of f?
  - c. Is *f* a function?
  - d. What is the image of f?
  - e. What is the preimage of  $\{\{1,2,3\},\{1,2,3,4,5\}\}$ ?
  - f. Is f injective (one-to-one)? If so, prove the statement (Ch. 5.5)

- 5. Let  $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$  be defined by f((x, y)) = x + 2y
  - a. What is the domain of f?
  - b. What is the codomain of f?
  - c. Is f a function?
  - d. What is the image of f?
  - e. What is the preimage of  $\{0\}$ ?
  - f. Is f injective (one-to-one)? If so, prove the statement (Ch. 5.5)

Week 8 Functions and Relation

- 6. Let  $f: \mathbb{N} \to \mathbb{N}$  be defined by f(n) = n + 1 (Ch. 5.5)
  - a. Is f injective (one-to-one)? If so, prove the statement

b. Is f surjective (onto)? If so, prove the statement